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Transition phenomena in oscillating 
boundary-layer flows 

By J .  A. MILLER* AND A .  A.  FEJER 
Illinois Institute of Technology, Chicago, Illinois 

(Received 38 June 1963) 

The transition Reynolds number and the turbulent Reynolds number induced 
by a sinusoidally fluctuating free stream have been determined experimentally. 
The oscillating flow was produced in a closed-circuit wind tunnel by means of a 
rotating shutter valve which had a range of frequencies from 4 to 125 c/s corre- 
sponding to a range of the dimensionless frequency parameter, w v / U : ,  of 
2.29 x 10-6 to 4.49 x 10-5. The dimensionless amplitude parameter, AU/Oa, 
could be adjusted by means of shutter blades of various widths from a value of 
0.0775 to 0.667. 

Flows in both the free stream and the boundary layer were monitored simul- 
t,aneously by means of two transistorized constant-temperature hot-wire 
anemometers. The transition Reynolds number, the turbulent Reynolds number 
and turbulent intermittency factor, y ,  were determined from the velocity-time 
traces recorded on a dual-channel oscilloscope. 

It was found that the transition Reynolds number depends only on the ampli- 
tude of the oscillations and that the dimensionless transition length is a function 
only of the frequency. The time-space distribution of turbulent bursts in the 
transition region indicates that the location as well as duration of bursts is quite 
regular and closely tied to the fluctuations of free-stream velocity, confirming 
the analysis of Greenspan & Benney. 

Introduction 
The influence of free-stream turbulence and streamwise pressure gradients on 

transition from laminar to turbulent flow in boundary layers has been the sub- 
ject of numerous investigations, for example, Schlichting (1962)) Schubauer 
& Skramstad (19.13) and Taylor (1938). On the other hand, large oscillations of 
the free-stream velocity have not been considered in this context. The present 
study is concerned with transition in Blasius-type boundary layers produced 
by a free stream having an oscillating component of velocity. 

Transition in Blasius flow 
Steady viscous flow over a semi-infinite flat plate without streamwise pressure 

gradient, termed Blasius flow, represents the simplest type of a boundary-layer 
flow and the one about which the greatest fund of knowledge has been accumu- 
lated. A reasonably complete qualitative picture of transition for Blasius flow 
has already been assembled. 

* Present address : U.S. Naval Postgraduate School, Monterey, California. 
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Proceeding downstream with the flow from the leading edge of the plate a 
sequence of events are observed which ultimately lead from an initially laminar 
boundary-layer flow to a fully established turbulent flow. As will be shown, a 
complete description of this process requires at least three characteristic 
Reynolds numbers. 

A hot-wire anemometer placed in the laminar boundary layer near the leading 
edge reveals the existence of random disturbances corresponding in magnitude 
to the turbulence level of the free stream. When the probe is moved further 
downstream past a point, referred to in the stability analysis of Tollmien- 
Schlichting as the critical Reynolds number (hTBe,c), a selective amplification of 
these disturbances takes place. This phenomenon cannot be readily observed 
unless the turbulence level of the free stream is exceedingly low, as was the case 
in the experiments of Schubauer & Skramstad which confirmed the Tollmien- 
Schlichting neutral stability curve. The selective amplification of the random 
disturbances results in a regular two-dimensional pattern of sinusoid-like dis- 
turbances, referred to as Tollmien-Schlichting waves, which increase in ampli- 
tude slowly with increasing Reynolds number until interrupted by short random 
bursts of large-scale disturbances referred to as turbulence. Typically, the 
appearance of turbulent bursts occurs a t  a Reynolds number, referred to as the 
transition Reynolds number (A&, J, which exceeds the critical Reynolds number 
by an order of magnitude. The r6gime between the transition Reynolds number 
and the turbulent Reynolds number is characterized by an intermittency 
factor, y ,  defined as the fraction of the time during which the flow of a given 
position remains turbulent. 

It has been observed that this breakdown of the Tollmien-Schlichting waves 
into turbulence is not a sudden spatial phenomenon, but a sequence of random 
three-dimensional temporal bursts of turbuleiice first appearing at the transition 
Reynolds number and becoming more frequent with increasing Reynolds number 
until a t  some third critical Reynolds number, termed the turbulent Reynolds 
number, (NRe,T),  the flow becomes wholly turbulent. Thus, there are three 
characteristic Reynolds numbers necessary to complete description of the 
transition phenomenon. 

An understanding of the development of turbulent fluctuations in the region 
between the transition and turbulent Reynolds numbers requires an analysis 
of the stability of the Tollmien-Schlichting flow to finite disturbances. This 
problem has been approached by Stuart (1960) and Watson (1960) and more 
recently by Greenspan & Benney (1963). Based on on a mapping of the flow 
in the Tollmien-Schlichting region by Kovasznay, Komoda & Vasudeva (1962), 
and Klebanoff, Tidstrom & Sargent (1962), Greenspan & Benney have formu- 
lated an approach to the question of the linear stability of the Tollmien-Schlichting 
flow t o  large disturbances. This was accomplished by introducing a number of 
approximations of the Blasius velocity profile modified by the Tollmien- 
Schlichting flow and computing the turbulent energy amplification rate. Al- 
though no general solution can be obtained in this manner, a qualitative under- 
standing of the results was developed by approximate analysis of the equations 
from which order-of-magnitude results can be calculated. The results indicate 
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that the intensity of shear is the critical parameter in control of the energy ampli- 
fication and the shear-layer thickness emerges as the parameter controlling the 
wave-number of frequency sensitivity. The former of these two results was 
correctly anticipated by Liepmann (1945). 

The Greenspan-Benney analysis confirms the notion that instability of the 
Tollmien-Schlich ting flow is the mechanism responsible for the sudden amplifica- 
tion of high-frequency disturbances and breakdown into turbulence. Moreover, 
it  leads to a picture of the ' continuous creation of local instabilities generating 

Length 

in the transition region. 
FIGURE 1 .  Theoretical time-space distribution of tnrbnlent bursts 

turbulent spots a t  favourable positions and times corresponding to  the most 
intense shear layer '. Figure 1 is a time-space map of such instabilities taken from 
Greenspan & Benney. It should be noted that both the assumed disturbances 
and the resulting breakdown pattern were t,wo-dimensional while actual steady- 
How breakdown patterns have been observed to be three-dimensional in character. 

In  order to determine to what extent the phenomena associated with transition 
in steady flows, described above, are related to transition in an oscillating stream, 
t,he characteristics of boundary layers in oscillating streams must be considered. 

It has been shown by Hill (1958), Karlsson (1958) and others that the mean 
value of the local velocity is iiot affected by the superposition of an oscillating 
component in either laminar or turbulent boundary layers. The mean flow then 
remains a solution of the Navier-Stokes equations and may be subtracted from 
the linearized equations of motion. Thus, the resulting disturbance equations 
are identical to those obtained for steady flow and the Tollmien-Schlichting 
theory should be applicable to large amplitude oscillating flows. When the ampli- 
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tude of the oscillating component of the free-stream velocity is equal to or 
greater than typical turbulence amplitudes, one may expect to find agreement 
between the transition process in the oscillating boundary layer and the descrip- 
tion given by Greenspan & Benney for the steady case since spanwise variations 
are likely to be suppressed in the oscillating flow due to the two-dimensional 
character of the oscillations. 

Experimental apparatus 
The present work was carried out in a low-speed closed-circuit wind tunnel 

having a 2ft.-square test section and a velocity range of lO-lOOft./sec. Free- 
stream turbulence intensities, ( u/lJm), from 0.585 to 0-667 were measured in this 
velocity range. Oscillatioiis in the free-stream velocity were introduced by means 
of a rotating shutter valve (figure 2 ,  plate l), located between the test section 
and the diffuser. 

The shutter valve consists of a frame supporting four shafts equally spaced 
across the section height. Each shaft is provided with a slot into which flat 
blades of various widths may be introduced, forming a set of four butterfly 
valves spanning the cross-section. The range of widths of blades employed 
allowed perturbations in the range of 8-92 % of the free-stream velocity to be 
introduced. The valve was driven by a variable-speed electric motor which 
provided a range of frequencies from 4 to 125 cjs. 

The top of the test section was fitted along its centre line with a slot covered 
by a sliding strip of spring steel for its entire length with the exception of two 
$-in. holes through which hot-wire anemometer probes were inserted. A traver- 
sing mechanism seen in figure 2 allowed these probes to be positioned axially 
with a precision of 0.010in. One of the probes was attached to a micrometer 
mechanism, having a range of 1 in., which was used for traversing the boundary 
layer. The second probe, used for measurements in the free stream, was located in 
the same transverse plane as the traversing probe. 

The flat plate model, fabricated of $-in. aluminium plate, 23iin. wide and 
36 in. long is shown installed in the test section in figure 2 .  The leading edge was 
milled to a 10" wedge with a 0-010in. tip radius. The plate was hand lapped to a 
20pin. finish after all scratches and nicks were filled with an epoxy compound. 

The forward stagnation point was positioned approximately 0.025 in. from 
the leading edge on top of the flat plate with the aid of an adjustable flap, seen in 
figure 2 ,  plate 1, located on the upper wall directly over the trailing edge of the 
plate. Static-pressure surveys along the centre-line of the plate indicated that 
the flap had a negligible effect on the pressure distribution over the first 24 in. of 
the plate and that the pressure gradient, represented there by a Euler number 
of 0-0292, was approximately zero. 

The constant-temperature hot-wire anemometers used for the velocity 
measurements are based on the design of L.S.G.Rovasznay and consist of 
transistorized, d.c.-coupled circuits having an estimated frequency response of 
17 kc/s. A self-contained transistorized analogue computer serves to invert 
King's Law and yields an output which is linear in velocity. The d.c. coupling 
permits the output to be separated into steady and oscillating components which 
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is otherwise not possible. The wire filaments employed were O.Ot30in. long and 
were prepared from 0.00015 in. tungsten wire. 

Output from the two hot-wire channels was displayed on a two-channel 
oscilloscope and recorded photographically. The d.c. and ax.  components of 
the hot-wire signals were measured with a vacuum-tube voltmeter and a Ballan- 
tine True R.M.S. Voltmeter, respectively. Harmonic analyses of the velocitg- 
time traces were determined with a vibration aiialyser equipped with a selective 
band-pass filter. 

Calibration of the hot-wire anemometers was carried out in situ using a con- 
ventioned Prandtl probe as a standard. 

Characteristics of the flow 
In  order to insure that the experimental apparatus and instrumentation 

would produce results consistent with previous work, the transition and turbulent 
Reynolds numbers were measured in a steady flow a t  a free-stream turbulence 

1-0 

0.0 

Measured steady-flow transition 
- in present work 

4 I 1 

0 1 -0 2-0 3.0 
Turbulence intensity ( u / U )  x 100 

FIGURE 3. Effect of free-stream turbulence on steady flow transit,ion Reynolds number. 

intensity of 0.625 % and found to be 9.54 x 105 and 1.276 x 106, respectively. 
The former of these two points is shown with the data of Schubauer, Dryden and 
Hall and Hislop reported by Schlichting (1962) in figure 3. 

With the shutter valve in operation laminar and turbulent velocity profiles 
were determined under flow conditions similar to those of Hill and Karlsson, 
respectively. 

In the laminar region the mean velocity profile was found to agree closely with 
the Blasius profile, as had been observed by Hill. Distribution of the local 
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oscillation amplitude parameter, AulU,, confirmed the theoretical results of 
Nickerson (1957) and the measurements of Hill in the laminar boundary layer 
for the low-frequency r6gime. In  the high-frequency regime, it was found that 
the analytical treatment of Lin (1956) adequately described the flow. 

In  the turbulent boundary layer the distribution of the local amplitude para- 
meter, AulU,, was found to agree with the measurements of Karlsson who 
employed similar means for introducing oscillations and the same type of 
instrumentation. 

The boundary-layer oscillations were observed to be always in phase with the 
fluctuations in the free stream; however, these observations were limited to 
distances from the wall in excess of 0.010 in. The study of Lin, applicable to large- 
amplitude oscillations, predicts differences in phase at points closer than could 
be conveniently surveyed. On the other hand, phase differences have been 
reported by Hill for large distances from the wall. However, from the descrip- 
tion of the apparatus used by Hill, it  appears that these apparent phase differences 
may have been the result of distortions due to frequency-compensation problems 
associated with the constant-current hot-wire anemometer employed in that 
case. Attention has been called to difficulties of this type by Hinze (1959). 

The accuracy with which the rotary valve produced sinusoidal oscillations 
was also considered. Harmonic analyses during two runs revealed that for both 
cases four terms of the Fourier series adequately represented the wave form within 
1 %. These results are similar to those of Feiler & Yeager (1962), who produced an 
oscillating flow by means of a rotating siren-like valve located upstream of the 
test section. 

The transition Reynolds number in oscillating flow 
Transition Reynolds number, NRp,t, have been determined in oscillating flow 

for a range of dimensionless amplitude, NA = AlJjQ,,, from 0-0775 to 0-667 in 
which range the transition Reynolds number appears to be independent of the 
oscillation frequency. The flow conditions are summarized for each of the runs 
in table 1 and the results are presented in figure 4 and table 2. In addition to 
these results, data by Hall & Hislop (1938) concerning the effect of free-stream 
turbulence intensity on transition are included in the figure and the critical 
Reynolds number of the Tollmien-Schlichting theory is also shown. The latter 
is approached by the transition Reynolds number as Nd approaches unity. i.e. 
the amplitude of the velocity fluctuation approaches the mean of the free-stream 
velocity. It is apparent from the experimental results that the transition 
Reynolds number is independent of the frequency of the oscillations. This seems 
to be consistent with the conclusion reached by Liepman (1945) that in steady 
Blasius flow the transition Reynolds number is determined by the free-stream 
turbulence level. 

The turbulent Reynolds number 
For each of the experimental runs in which complete transition was realized 

on the flat plate the turbulent Reynolds number, NRe, T, is presented in table 3. 
The corresponding dimensionless transition length is shown in figure 5 as a func- 
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tion of the frequency parameter A$ = wv/U:. It is apparent from this figure 
that the transition length is dependent on the frequency of the oscillations and 
is independent of their amplitude, as predicted by Greenspan & Benney. For 
values of the frequency parameter, N,, of the order of 5 x the traiisit’ioii 
length approaches zero. 

106 - 

- 
5 
4 -  

2 3 -  

2 -  

N R ~ ,  (computed from small disturbance theory with 
correction for dp/dx) after Schlichting 

I I I 1 1 1 1 1 1  I I I I I I I l l  

4 6 8 1-0 7 4 6 8 10-1 2 10 2 I 

10’ 

NA = AUIU, 

FIcrrnE 4. Effect of t,lie amplitude parameter, AU,/U,, on the trailsition 
Reynolds number. 

“‘n 0 NF = ( ~ ) V / U ;  
Run (ft./acc) N A  = AUjU, (c is )  x 106 

1 103.2 0.0775 20.0 2.29 
Y 101.1 0.0830 7.58 0.845 
3 103.2 0.115 4.08 0.455 
4 103.6 0.132 12.5 1.354 
5 102.0 0.0910 39-7 4-58 
6 61.3 0.667 11.38 3.58 
7 56.6 0.487 4.16 1.51 
8 63.0 0.429 28.6 8.65 
9 62.7 0.421 22.7 6.86 

10 87.1 0.186 4.16 0.651 
11 77.0 0.222 15.15 3.10 
12 75.8 0.223 27.8 5.85 
13 74.8 0.280 45.4 9.63 
14 105-7 0.115 4.08 0.427 
15 102.9 0.136 15.9 1.79 
16 107.6 0.0925 122 13.69 
17 85.9 0.240 125 2 6 9  
18 74.5 0.560 119 44.9 

D 

TABLE 1. Experimental opcrating conditions. 

Distribution of turbulent intermittency in the transition zone 
The distribution of the intermittency factor, y ,  in the transition region was 

determined from the oscilloscope traces and is shown for a typical run in figure 6. 
The corresponding sequence of oscilloscope traces is presented in figure 7 .  
The striking regularity with which a turbulent burst appears in every cycle and 
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FIGURE 5. Effect of the frequency parameter, wv,’U$, on the 
transition lengtjh. 

NRe, 1 

Run A5 = AU/U,  x 10-5 
1 0.0775 3-10 
2 0.0830 3.58 
3 0.115 3.81 
4 0.132 4.20 
6 0.0910 3.56 
6 0.667 1.90 
7 0.487 2.29 
8 0.429 1.92 
9 0.421 1.93 

10 0.186 2-88 
11 0.222 2.32 

9.99 12 0.233 1 ”  

13 0.280 2.31 
14 0.115 3.33 
15 0.136 2.80 
16 0.0925 2.95 
17 0.240 2.39 
18 0.560 2.00 

AL?. T 
x 10-5 

16.4 
- 
- 

- 
9.35 
7.07 

4.40 
5.54 

9.30 
7.85 
3.96 

- 

- 

- 
- 

5.72 
3.38 
2.33 

NF = wlj /U% 

x 106 
2.29 
0.845 
0.455 
1.354 
4.58 
3.58 
1.51 
8.65 
6.86 
0.651 
3.10 
5.85 
9.63 
0.427 
1.79 

13.69 
26.9 
44.9 

4.29 

1.29 
1.87 

3.00 
2.43 
0.747 

- 

- 

- 

0.940 
0.476 
0.165 

TABLE 2. Transition and turbulent Reynolds numbers. 
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the similarity between the resulting picture shown in figure 6 and the qualitative 
results shown by Greenspan & Benney, figure 1,  indicates the anticipated close 
relationship between transition processes in oscillating flows and those in 
steady flows subjected to two-dimensional, periodic free-stream disturbances. 

Greenspan & Benney have predicted that such disturbances would remove 
the random spanwise variation of the intermittency factor observed by Schubauer 
& Skramstad in steady-flow transition. This effect seems to materialize as shown 
by spot checks of y made a t  a point located a t  a spanwise distance of 2 in. froin 
the boundary-layer probe. 

1.0 

0.9 

0.8 - 

0.7 - 
0.6 - 
0.5 

0.4 

0-3 

0.2 

- 
- 

- 
- 
- 

- 

0.9 I I 

4 6 8 10 12 14 16 18 20 22 24 26 
9 in. 

FIGURE 6. Measured time-space distribiitioii of t,urbulent bursts in the 
t.ransit,ion rqgion. Run 8: N ,  = 0.667, NF = 8.65 x 10F. 

The randomness in the streamwise distribution of the intermittency factor, 
y ,  characteristic of steady-flow transition was not observed in the present work. 
This is traceable to the fact that an oscillating free-stream velocity component 
strong enough to eliminate the spanwise variation must do so by influencing the 
time-space variation of peak shear in the boundary layer. Since the peak value 
of shear has been shown to be the critical factor in transition, it must follow that 
if the oscillating free stream removes the spanwise randomness it must also 
remove the streamwise randomness. The time-space distribution of turbulent 
bursts predicted by Greenspan & Benney, figure 1, imply a linear streamwise 
variation in the intermittency factor. The measured distribution, figure 6, con- 
firms this. 

Variation with vertical distance in the values of the time corresponding to 
initiation of a turbulent burst, 7i, and the time corresponding to cessation of the 
turbulent burst, r0, have been determined within the boundary layer a t  various 
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distances from the wall at a single streamwise location. The variation across the 
boundary layer in ri was found to be 5.5 yo and the variation in ro 6.0 "/b. The 
values of ri and ro appeared to be scattered randomly and no trend with change 
in vertical distance was detected. 

N = O  X = 7.0 in. = 1.92 lo5 Re X = 0 in. 

N~,=~.Iz~ lo5 X = 15.0 in. X = 10.0 in. NR, = 2.74 x lo5 

A'= 20 0 In N~~ = 5 48 lo5 X = 26 0 in N R ,  = 7 14 x lo5 

FIGURE 7.  Oscilloscope traces illustrating the growth of the intermittency factor, y ,  
v ith increasing Reynolds number in the transition region. Upper trace : boundary-layer 
record. Lower trace : free-stream record. 

Conclusions 
From the results the following conclusions may be drawn: 
1. The transition Reynolds number, NRe,l, is influenced only by the amplitude 

of the free-stream oscillation, as is shown in figure 4, confirming the prediction 
of Liepmann. 

2. The dimensionless transition length is influenced only by the frequency of 
the free-stream oscillation, as shown in figure 5, confirming the prediction of 
Greenspan & Renney. 
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3. The time-space distribution of the intermittency function, y ,  shown in 
figure 6, confirms the qualitative theoretical prediction of Greenspan & Benney 
shown in figure 1.  
4. In  oscillating flow the time-space distribution of the intermittency function, 

y ,  is not random as it is in the case of steady flow, since the oscillating component 
of velocity rigorously influences the time distribution of shear which leads to 
breakdown. 

J. A .  Miller and A .  A .  Pejer 

R E F E R E N C E S  
FEILER, C. E. & YEAGER, E. B. 1962 Effect of large-amplitude oscillations on heat trans- 

fer. NASA Tech. Rep. R-142. 
GREENSPAN, H. P. & BENNEY, D. J. 1963 On shear-layer instability, breakdown and 

transition. J .  Fluid.  Mech. 15, 135-53. 
HALL, A. A. & HISLOP, G. S. 1938 Experiments on the transition of the laminar boundary 

layer on a flat plate. Aero. Res. Counc. R. &. 111. no. 1843. 
HILL, P. G. 1958 Laminar boundary layers in oscillatory flow. D.Sc. Thesis, Massa- 

chusetts Institute of Technology. 
HINZE, J. 0. 1959 Turbulence, An Iiatroduction to its Mechanism and Theory. New York: 

McGraw-Hill. 
KARLSSON, S. F. 1958 An unsteady turbulent boundary layer. Ph.D. Thesis, Johns Hop- 

kins University. 
KLEBANOFF, P. D. & TIDSTROM, D. D. & SARGENT, L. M. 1962 The three-dimensional 

nature of boundary-layer instability. J .  Fluid A1ech. 12, 1.  
KOVASZNAY, L. S. G., KOMODA, H. & VASUDEVA, B. R. 1962 Detailed flow field in tran- 

sition. Proc. 1962 Heat Trans.  FLuid Mech. I m t . ,  Stanford University Press. 
LIEPMANN, H. W. 1945 Investigation of boundary layer transition on concave walls. 

N A C A  Advance Con3dentia.l Report 4328. 
LIN, C. C. 1956 Motion in the boundary layer with a rapidly oscillating external flow. 

9th Intern. Cong. AppZ. Mech., Brussels, Belgium. 
MILLER, J. A. 1963 Transition in oscillating Blasius Row. Ph.D. Thesis, Illinois Institute 

of Technology. 
NICKERSON, R. J. 1957 The effect of freestream oscillations on the laminar boundary 

layer on a flat plate. D.Sc. Thesis, Massachusetts Institute of Technology. 
SCHLICHTING, H. 1962 Boundary-Layer Theory. New York : McGraw-Hill. 
SCHUBAUER, G. B. & SKRAMSTAD, H. K. 1943 Laminary boundary layer oscillations 

STUART, J. T. 1960 Stability of a class of shear flows. J .  Fluid Me&. 9, 353. 
TAYLOR, G. I. 1938 Some recent developments in t,he study of turbulence, PYOC. 5th Int .  

WATSON, J. 1960 On tho stability of the three-dimensional disturbances of a viscous 

L 

and stability of laminar flow. Nut.  Bur.  Stand. Res. Paper 1772. 

Congr. ,4pp1. Mech. p. 294. New York. 

fluid. J .  Fluid Mech. 9, 371. 



Journal of Fluid Mechanics, Vob. 18, part 3 Pluk 1 

MILLER AND VEJER (Faeiny p .  448) 




